
May 2003 www.stsc.hill.af.mil 23

In the initial decades of the computer
industry, systems were built in isola-

tion. Large problems typically were
solved through the development of
numerous, stand-alone, vertical solutions.
As computer systems started covering
progressively larger segments of the
problem space, they began to overlap and
often failed to integrate.

The solution to this problem was part
systems engineering, and part grand design
and grand implementation. The premise
behind these grand approaches was to
think of the entire problem and to imple-
ment a total solution. Although on the sur-
face this seems perfectly reasonable, the
problem is that this strategy, especially
when coupled with a Waterfall Model
life-cycle development approach, simply
does not reliably scale up to implement-
ing large, complex systems.

Depending on whose data you refer-
ence, there is anywhere from a 50 percent
to an 80 percent likelihood that any given
software system project will fail [1]. That
is, the project will require substantially
more time than originally planned, cost
substantially more than originally budget-
ed, or will deliver substantially less func-
tionality than originally expected, or any
combination of the preceding. Further-
more, the larger the project, or the longer
the planned duration, the greater the like-
lihood of failure.

After nearly 25 years in the software
industry and 10 years of conducting
process appraisals using the Software
Engineering Institute’s Capability
Maturity Model® for Software, I have
repeatedly observed that it is exceedingly
rare for complex, large-scale, multi-year,
grand implementation software projects
to deliver all expected functionality with-
in the originally planned schedule and
budget. But are these failures truly due to

the grand implementation approach, or is
it something else?

Grand Implementation
Problems
In this article, grand implementation
approaches are considered to be coupled
with a Waterfall Model life-cycle develop-
ment approach. Although large, complex
systems often need a grand design to
ensure overall architectural integrity, hav-

ing such a design does not mean that the
next step must be a grand implementa-
tion. Nevertheless, after a grand design is
completed development often com-
mences for the entire system. When the
entire system is ready, it is put though
integration test, system test, and accept-
ance testing: classic Waterfall Model
development. While this can be a very
effective approach for small systems or
short duration projects, it becomes a
much less successful approach as project
duration and complexity increase.

Part of the problem is requirements
volatility. The traditional response to this
problem is to require the customer to

freeze their requirements – as if that were
possible. Frozen requirements make
absolutely no sense for the simple reason
that all systems are basically built to
address one root requirement: solve the
customer’s problems. If a system is being
built during several years, what is the like-
lihood that the customer’s problems will
remain unchanged throughout this entire
period?

I do not know what the aggregate
staff-year transition point is regarding
when a grand implementation project
crosses over from being more likely to
succeed to being more likely to fail, but it
does not seem like a very large number.
Certainly a grand implementation
approach to a four-person, three-month
project will likely work. Maybe a grand
implementation approach can even work
on a 10-person, 18-month project if you
are really good. But what about a 100-
person, five-year, legacy systems modern-
ization project? Can we reliably apply
grand implementation thinking to this
scale of a project, or should we consider
another approach?

There is still another problem with
the grand implementation strategy. Even
if you can get it to work, you have likely
created an absolute nightmare for whoev-
er will build the eventual replacement
system. Too often, people who design
systems do not think about an incremen-
tal approach to that system’s retirement. If
you do not design the system for incre-
mental retirement, then in all likelihood
you will not be able to conduct an incre-
mental retirement.

Typically, this forces the replacement
system to also be based upon (yet anoth-
er) grand implementation, all-or-nothing
solution. Replacement systems are usual-
ly much more complex than the systems
they replace, so the problem of total solu-

Planning and Managing the
Development of Complex Software Systems

Dr. Richard Bechtold
Abridge Technology

With the ongoing evolution of information systems and computer technologies, it is becom-
ing progressively easier to leverage incremental design, development, and testing strategies.
This article briefly examines the problems inherent in the traditional “grand, all-at-once”
implementation approach. Next, an alternative approach is described that leverages grand
and incremental design, incremental development, early incremental testing, rapid risk
reduction, and the re-calibration of data used for estimation. Key benefits to this approach
include easily developed and highly reusable estimation data, early verification of system fea-
sibility, early management of customer expectations, and early validation of system usabil-
ity and acceptability.

Wednesday, 30 April 2003
Track 4: 1:50 — 2:30

Ballroom D

“Depending on
whose data you

reference, there is
anywhere from a 50

percent to an 80
percent likelihood that

any given software
system project will fail.”

tion replacement – often referred to as legacy
system modernization – can lead to projects
that are progressively more likely to
repeatedly fail [2].

Designing and Planning
Complex Software Systems
The remaining sections of this article
look at a systematic alternative approach
for complex systems’ construction. For
simplicity, this discussion generally focus-
es on the design, estimation, planning,
and management of the construction and
delivery of complex Web-based systems
or systems that include Web-based sub-
systems, but the principles are also appli-
cable to the construction of other types
of software-intensive systems.

Micro-Incremental Development
Incremental development is not a new
concept, but the eXtreme Programming
(XP) community has given further defini-
tion to some of the principles. In partic-
ular, XP advocates using a highly incre-
mental approach, and building testable
functionality in much smaller and shorter
duration steps [3]. The approach advo-
cated in this article adds additional details
to this foundation.

When commencing system decompo-
sition, strive to allocate high-level func-
tionality into regions, partitions, and
frames. For this article, regions are
defined as major subsystems that can be
separately implemented, tested, main-
tained, and replaced. At the design level,
regions capture required system function-
ality but defer physical implementation
details.

Each region consists of several parti-
tions that can be separately implemented,
tested, maintained, and replaced. At the
design level, partitions reflect not only
functional requirements but also capture
all important physical implementation
details.

Lastly, each partition is divided into
several frames. Frames are low-level or
atomic software components such as Java
class files that can be separately assigned
to small software teams for parallel con-
struction and unit testing.

Generally, a large system can be
designed with five to 10 distinct regions,
each with five to 10 distinct partitions.
Completed regions should deliver actual
usability to the customer or system end-
users. Within each region, completed par-
titions should deliver actual functionality.
Although functionality does not neces-
sarily translate into usability, it does allow
the customer or system end-users to eval-

uate system characteristics and perform-
ance, and to provide early feedback to the
development team [3].

Hot-Swappable Partitioning
One of the key tenants of this approach
is that each partition is hot-swappable or
capable of being replaced with little or
no adverse impact on the rest of the sys-
tem. Given the preceding guidelines of
five to 10 regions, each with five to 10
partitions, your design will contain
between 25 and 100 separately imple-
mentable, testable, and replaceable parti-
tions. To facilitate this, partitions can be
designed to interact with each other pri-
marily through message passing and file
input/output.

Of course, there are trade-offs to be
addressed. Partitions that communicate
via file input/output will suffer a severe
performance penalty. Additionally, as sys-
tems evolve and grow larger, there is a
general tendency for them to become
increasingly interconnected. Avoiding
this will usually require periodic efforts to
reduce partition coupling and to increase
partition cohesion, both of which trans-
late into increased time, money, and
effort. However, by taking steps to
ensure hot-swappable partitioning there
is an increased likelihood that you can
more easily fix or upgrade individual par-
titions without adversely impacting the
rest of the system.

Nevertheless, given the preceding
issues it is clear that 100 percent hot-
swappable partitioning is more of an
ideal than it is a practical reality. At a min-
imum, however, it is certainly critical to
avoid the all-or-nothing implementation

where the system is either completely
working or completely useless. Within the
limits of system performance, project
budgets, and schedule constraints, hot-
swappable partitioning should be a top-
priority design objective and built into as
many partitions as possible.

Commitment Deferral
A third key concept is the deferral of
technical commitments, and especially
architectural commitments, to the great-
est extent possible. Again, in some areas
commitment deferral may be impossible
or, indeed, not even desirable. Neverthe-
less, during design you may have some
opportunities to allocate certain tech-
nologies to partitions that you plan to
build towards the end of the project. By
deferring commitments you increase the
likelihood that you can more easily
respond to changing requirements,
changing technologies, or evolving solu-
tion alternatives.

Early Detection/Agile Response
Further leveraging XP, a fourth key con-
cept is to plan for a development and
implementation approach that allows for
early detection of any problems, and for
agile and rapid response to those prob-
lems. Given that you have designed for
both usable releases (regions) and func-
tional releases (partitions), system com-
ponents can be developed, tested, and
immediately delivered to key stakehold-
ers. In addition to early detection and
correction of defects and improved cus-
tomer communications, this approach
will allow you to perform highly effective
customer expectation management.

Partition and Frame Estimation
Even though the preceding guidelines
will result in a system where functionality
is implemented across 25 to 100 parti-
tions, these partitions may still be too
large to accurately estimate required
work. Therefore, as indicated earlier, each
partition can be further decomposed into
five to 10 frames. The primary objective
of frames is to facilitate planning, con-
struction, unit testing and integration
testing, and to support risk management
(more on this later).

Each frame should be assigned to one
person or to a very small team (such as
with pair programming). Additionally,
each frame should generally appear to
require somewhere between one and four
weeks of work. When it is obvious that
less work will be required, frames can be
combined. Conversely, if more work is
obviously required, frames can be further

24 CROSSTALK The Journal of Defense Software Engineering May 2003

“Even if you can get it
[grand implementation

strategy] to work,
you have likely

created an absolute
nightmare for whoever
will build the eventual
replacement system ...
you will not be able

to conduct an
incremental retirement.”

Software Engineering Technology

Planning and Managing the Development of Complex Software Systems

May 2003 www.stsc.hill.af.mil 25

decomposed.
The next step is to analyze the key

attributes of each frame and to use those
attributes as the basis for schedule and
cost estimation. Although key attributes
will vary substantially between different
software systems, some attributes will be
almost universally important, such as a
system’s diagnostic capability [4].

For example, the following are five
key attributes to consider for systems that
include Web-based partitions:
• Artwork or static content.
• Logic or core dynamic content.
• Diagnostics or the ability to detect mis-

use or system intrusions.
• Security or the ability to prevent mis-

use or system intrusions.
• Containment and Recovery or the ability

to perform damage control and
repair.
As shown in Figure 1, each attribute is

analyzed and rated using a five-block by
five-block grid. To rate the preceding five
different attributes, you would use five
separate tables. Figure 1 shows an empty
grid for estimating required security for a
particular frame.

The rows of the grid indicate the rela-
tive amount of work to be done. Rows are
labeled top-down from E to A indicating
an extremely high amount of work to an
extremely low amount of work, respec-
tively. The columns of the grid indicate
the relative complexity of the work to be
done. Columns are labeled left to right
from 1 to 5 indicating extremely low
complexity to extremely high complexity,
respectively. Since the outermost rows
and columns represent extremes, most
attributes should be rated in rows B, C, or
D and in columns 2, 3, or 4.

As each of the five grids is complet-
ed, the estimator determines a confi-
dence level of low, medium, or high and
then documents this in the upper left cor-
ner. In Figure 2, the estimator indicated
they had a low level of confidence in
their estimate and that security complex-
ity is rather low (column 2) for this frame.
However, the amount of work related to
implementing security features is shown
as extremely high (row E).

After the five key attribute grids are
done, the estimator uses them as support
information for the composite grid. The
composite grid, as shown in Figure 3, is
used to estimate overall staff-days for
constructing a frame. The cells of the
composite grid contain values represent-
ing the expected staff days, and the esti-
mator simply circles one of the values.
Note that there is a general, but not algo-
rithmic, relation between the key attribute

basis grids and the composite grid. For
example, if most of the basis grids were
marked in the upper right regions, it
would normally occur that the composite
grid would likewise have a cell selected
from the upper right region.

As a final step, the estimator uses the
upper left square in the composite grid to
indicate low, medium, or high confidence
in the accuracy of their selection for
expected staff-days duration.

The default values shown in Figure 3
were deliberately selected so that normal
work would span from one to three
weeks (the interior three rows and
columns). Recall that the work for each
frame was initially intended to be obvious-
ly between one and four weeks. The
default values in the composite grid actu-
ally accommodate ranges from 40 per-
cent of the obvious minimum to 150
percent of the obvious maximum, or
work that spans from two days (A1) to six
weeks (E5).

Given these default values, project
durations can span from approximately
one staff-year (five regions, each with five
partitions, each with five frames, each
estimated at two days) to approximately
120 staff-years (10 regions, each with 10
partitions, each with 10 frames, each esti-
mated at six weeks). Decomposition can
be reduced, or increased, to accommo-
date shorter or longer project durations,
respectively. Similarly, the default values
in the composite table can – and indeed
should – be adjusted over time to better
reflect your actual projects and perform-
ance [5].

When you have completed these
design and planning steps, you will have a
comprehensive and detailed foundation
from which to commence managing and
controlling your project.

Managing and Controlling
Complex Software Systems
Development
As mentioned previously, one of the
objectives of the third level decomposi-
tion (the frame level) is to support risk
management. To accomplish this, it is
recommended that you commence actual
development with the easiest two regions.
Within each of those regions, commence
development on the easiest two parti-
tions. Within each of those partitions,
commence work on the easiest two
frames. The objective of this approach is
twofold. First it helps ensure that the
development team’s learning curve
occurs in the least challenging parts of
the overall system. Second, you quickly

accomplish finished frames.
When you are done with the easiest

frames, then commence work on what
appear to be the hardest frames.
Likewise, commence work in the same
pattern with partitions and regions. The
objective here is – after much of your
learning curve is behind you – to reduce
project risk as rapidly as possible. By rap-
idly undertaking the hardest or most
challenging parts of the system, you can
more quickly discover whether or not
there are any insurmountable hurdles. On
the outside chance that you may have to
revisit your design, or may need to resort
to an alternative solution, these recovery
steps are happening much earlier than
they might otherwise. Because they are
occurring earlier, and because, as dis-
cussed earlier, one of your design goals
was also to defer commitments even in
the event that you need to take an alter-
nate approach, you have a much greater
likelihood that you will be able to keep a

Security
1 2 3 4 5

E

D

C

B

A

Figure 1: Key Attribute Analysis

Security
Low 1 2 3 4 5

E X

D

C

B

A

Figure 2: Example Ranking

Composite (Staff Days)
1 2 3 4 5

E 5 10 15 20 30
D 4 10 15 15 20
C 3 5 10 15 15
B 3 5 5 10 10
A 2 3 3 4 5

Figure 3: Composite Grid

greater percentage of the system already
developed.

Another benefit to first doing the eas-
iest work, then doing the hardest work,
and then doing the average work is that
data collected during development rapid-
ly becomes directly usable to recalibrate
your estimations and to more accurately
predict the remaining work on the proj-
ect. Depending on the total number of
frames, when you are as little as 20 per-
cent into the project you may have a
highly reusable set of actual data relating
to frames built, estimated time to build
them, and actual time to build, test, and
debug. This data can be used to further
improve the accuracy of estimates relat-
ing to the rest of the project.

An important part of this approach is
to take a few moments after a frame is
completed and do a retrospective estima-
tion worksheet. The format for these
worksheets is identical to the original
worksheets – the only difference is the
time they are completed. By taking this
approach, each frame will ultimately have
a minimum of two estimation work-
sheets. One worksheet was done before
work commenced, and another one was
done after work was completed. By com-
paring these before and after estimation
worksheets, you can analyze and adjust
your estimation approach if, for example,
you see a clear tendency to underestimate
either the amount or complexity of work
relating to one or more of the key attrib-
ute types.

As you develop the system, to the
greatest extent possible strive to rapidly
deliver partitions to the primary stake-
holders. This will allow for stakeholder
evaluation and feedback, and for you to
take a proactive approach when address-
ing conflicting expectations among the
stakeholders. Ideally, you can provide
early access and insight to end users, pro-
gram managers, procurement specialists,
subject-matter experts, and anyone else
who may have a strong and influential
opinion about the usability and accept-
ability of the final system.

Lastly, when tracking and reporting
progress, perform only binary accounting
at the frame level. That is, do not ask
developers for a percent complete esti-
mate on a given frame (we all know what
they will tell you). Instead only ask,
“Have you started working on it?” and
“Have you finished working on it?”
Before a frame is completely done, its per-
cent complete is zero. After a frame is com-
pletely done, its percent complete is 100.
At the partition and region level you can
easily calculate and report actual percent

complete as a function of the percentage
of completed underlying frames.

Conclusions
Grand implementation solutions and the
Waterfall Model life cycle were perfectly
acceptable approaches during the 1970s
and even the 1980s. However, as systems
continue to become progressively more
distributed and exponentially more com-
plicated there are significant opportunities
to deliberately design these systems so
that they can be incrementally construct-
ed, incrementally tested, incrementally
delivered, and incrementally evaluated.
This approach directly supports early ver-
ification of system feasibility and early
validation of system usability and accept-
ability.

Arguably, at least as important as the
preceding benefits, this approach also
directly supports the creation of systems
that can be incrementally upgraded, incre-
mentally retired, and ultimately incremen-
tally replaced.

Acknowledgments
Various individual aspects of this
approach have been in use for years on
systems and software engineering proj-
ects, XP projects, Capability Maturity
Model®-compliant projects, and else-
where. However, it is hoped that this arti-
cle presents a new and integrated view of
these various individual best practices, and
combines them in a way that will provide
substantial and reliable risk reductions.

The design, planning, development,
and management life cycle described in
this article, i.e., micro-incremental implemen-
tation and evaluation, hot-swappable parti-
tioning, commitment deferral, early
detection/agile response, and partition and frame
estimation is something I have advocated
for years. However, the technique for
basis estimation of key attributes, and
then using that as inputs to composite
tables, occurred to me while I was listen-
ing to a presentation being given by Rita
Hadden on “Credible Estimation for
Small Projects” at the 1st International
Conference on Software Process
Improvement in Washington, D.C., in
November 2002. I’m not exactly sure
what the specific connection is, but some-
one else might see one. In any event, her
presentation was not only practical and
informative, but also a source of inspira-
tion.◆

References
1. The Standish Group. Chaos. Boston,

MA: The Standish Group, 1994.
2. Bechtold, Richard. The Fatal Flaw of

the Information Systems Industry:
Failing to Design for Incremental
System Retirement. Accepted for
Proc. of the Project Management
Institute Seminar, PDS 2003. San
Antonio, TX, June 2003.

3. Beck, Kent, and Martin Fowler.
Planning eXtreme Programming.
Addison-Wesley, 2001.

4. Bechtold, Richard. Diagnostic Soft-
ware Architectures. Proc. of the
Second International Workshop on
Development and Evolution of
Software Architectures for Product
Families. Las Palmas de Gran Canaria,
Spain, Feb. 1998.

5. Bechtold, Richard, and Patricia Larsen.
Planning and Estimating Complex
Web-Based Projects. Proc. of the
Software Engineering Process Group
Conference. Boston, MA, Feb. 2003.

Software Engineering Technology

26 CROSSTALK The Journal of Defense Software Engineering May 2003

About the Author
Richard Bechtold,
Ph.D., is president of
Abridge Technology.
He is an independent
consultant who assists
industry and govern-

ment with organizational change and
systematic process improvement, espe-
cially in the area of implementing
effective project management. Bech-
told has nearly 25 years of experience
in the design, development, manage-
ment, and improvement of complex
software systems, architectures, pro-
cesses, and environments. This experi-
ence includes all aspects of organiza-
tional change management, process
appraisals, process definition and mod-
eling, workflow design and implemen-
tation, and managerial and technical
training. Bechtold also teaches gradu-
ate-level courses in software project
management, systems analysis and
design, principles of computer archi-
tectures, and object-oriented Java pro-
gramming at George Mason University.
The second edition of his latest book,
“Essentials of Software Project
Management,” is scheduled for publi-
cation in 2003.

Abridge Technology
42786 Oatyer Court
Ashburn,VA 20148-5000
E-mail: rbechtold@rbechtold.com

